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Shock waves in a gas with several relaxing 
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The structure of plane steady shock waves in a gas with several internal energy 
modes which relax in parallel is investigated. Transport effects are neglected. 
Conditions for continuity and monotonicity of the velocity profile are discussed; 
when all modes have constant specific heats and relaxation times it is established 
that velocity must decrease monotonically. Internal mode energy contents may 
overshoot their local equilibrium values. 

Numerical results for waves in a hypothetical gas with two relaxing modes are 
presented for purposes of illustration. 

~~~ 

1. Introduction 
In  general any gas has a number of relaxing internal energy modes whose 

excitation will exert an often dominant influence on either a part or on the whole 
of the structure of a compression wave. For the case of one relaxing mode, the 
situation is well understood and is in some cases amenable to analysis (e.g. 
Lighthill 1956, where the concepts of the fully and partly dispersed waves are 
introduced and discussed.) Where more than one relaxing mode is concerned, it 
is often the case that one relaxation time is extremely long compared with the 
others. It is then usual to assume that all the short-relaxation-time modes are 
in equilibrium, thereby reducing the problem to one of the single mode type. 
Such an assumption is sometimes acceptable for the rotational mode of a 
diatomic molecule, for example, and any subsequent vibrational relaxations are 
then treated on the basis of the one-mode model just described (e.g. Johannesen 
1961). Not all gases are diatomic of course, and not all relaxation times for the 
various possible modes of internal energy storage differ by many orders of 
magnitude. It is therefore of some interest to examine the problem of compres- 
sion-wave structure in a gas with many relaxing modes, all with different relaxa- 
tion times. The case of a number of relaxing vibrational modes has been studied 
before by Blythe (1963). However, an assumption concerning the internal 
energy behaviour was made which limited the applicability of this work to 
comparatively strong shocks. 

In  order to examine the many-mode problem, it is necessary to know how each 
mode is excited. For molecules with many vibrational modes, there is evidence 
that one mode may feed from another so that excitation is, at least in part, a 
series type of process, wherein one mode receives energy by collisions and then 
passes some on by a purely internal process to remaining modes. We do not 
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consider this type of excitation in the present paper; in order not to complicate 
the situation too much with permutations of possible cross-fertilizations amongst 
the modes, we make the simplifying assumption of excitation in parallel for all 
modes. That is to say, we assume that all excitations are collisional and that each 
mode obeys a relaxation equation of familiar form (see equation (16) below). It 
is possible that ‘linear’ relaxation equations of this type are valid only for small 
departures from equilibrium. Since most of the waves considered bel‘ow are 
weak, it is probable that these ‘linear’ equations are adequate. 

We shall also assume that the gas is pure, specifically excluding any possibility 
of chemical reactions which may drain away molecules of one type or another. 
Thus the number of relaxing modes remains constant throughout. 

To analyse the complete structure of a compression wave would demand the 
retention of viscous and heat conduction terms in the conservation equations, 
with attendant analytical or numerical difficulties. Such molecular transport 
processes have effective relaxation times of the order of one molecular-collision- 
time interval and, since many of the internal-mode phenomena of interest are 
characterized by much longer times, we feel some justification for excluding 
transport effects from the present work. The combined influences of transport 
effects and rotational and vibrational relaxation have recently been considered 
by Scala & Talbot (1963), who show amongst other things that one must be 
cautious about employing the equivalent-bulk-viscosity concept for rotational 
relaxation when large departures from local equilibrium are involved (see also 
the remarks in $6.11, Clarke & McChesney 1964). Scala & Talbot include cross- 
coupling effects between the modes, using a set of relaxation equations proposed 
by Herzfeld & Litovitz (1959). One of the results of their (numerical) analysis is 
that the internal-mode and translational temperatures never cross over in the 
wave, but we shall see later on that this is not a general result for many-mode 
shocks, and some internal-mode energies can overshoot their local equilibrium 
values in the right circumstances. Bearing in mind the possible difficulties 
associated with rapidly relaxing modes in certain cases, we shall assume for 
present purposes that they can be treated as a simple addition to the transla- 
tional energy, yielding a constant ‘ active-mode ’ specific heat. 

Having made quite a number of (reasonably justifiable) assumptions, we then 
attempt to keep the subsequent analysis as general as possible. Our aim is to try 
to elicit as much general information about the velocity, pressure, density, trans- 
lational-temperature and internal-mode-energy profiles as possible over the 
whole compression-wave speed range, without going to the lengths of obtaining 
specific, complete, solutions. In  the absence of transport effects, it therefore 
follows that we must be concerned with predicting the continuity or otherwise 
of the velocity m. distance curve (considered in 0 2) and with the possible appear- 
ance of stationary points in this curve (considered in $3) .  Whilst concentrating 
primary attention on the velocity profile, it will be found that the temperature 
and internal-energy-mode behaviour will emerge as the analysis proceeds. 

In  conclusion, the results of some numerical solutions are presented in order 
to exemplify the general conclusions for some special cases. Only plane steady 
waves are treated. 
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2. Continuity of velocity profles 
With the assumptions of a one-dimensional steady flow the equations of con- 

servation of mass, momentum and energy in the absence of transport phenomena 
can be written as 

(1)  

p + Q u  = f Q ,  (2) 

(3) 

PU = Q ,  

e + p / p  + +u2 = H ,  

respectively. Q, f and H are constants whose values depend on the (arbitrary) 
conditions in the flow ahead of the wave. p ,  p and u are the pressure, density and 
velocity, respectively. e is the specific internal energy, and in dealing with a pure 

gas we shall write m 

e = e l +  C e,, (4) 
v=2 

where el is the energy contained in the active states of unit mass of gas, and e, is 
the specific energy contributed by the vth relaxing internal mode. We assume 
that there are m- 1 such internal energy modes, as indicated in equation (4). 

(5) e ,+p/p  = hl = CplTl, 

where h, is the active-mode specific enthalpy, T, the translational temperature, 
and Cpl the (constant) active-mode specific heat at constant pressure, we can 
rewrite equation (3) in the form 

Noting that 

CP1Tl+&u2 = H - X  e,. (6) 

From now on we whall write 2 to mean X?&; summation over any other values 
of v will be indicated specifically as and when it proves necessary. 

The thermal equation of state is 
P = PRT,, (7 )  

(where R is the relevant gas constant), whence equations ( l ) ,  ( 2 )  and (7) show that 

p / p  = RTl = (f - U )  U .  

Remembering that CPl - c,, = R, 

and writing 71 = ~ P l l ~ W l ~  (10) 

where Cwl is the (constant) active-mode specific heat at constant volume, equa- 
tion (6) can be manipulated to give 

( U - P l f ) 2  = p ? f 2 + 2 W 1 -  l)/(r1+ l)H%-m* (11) 

We have written P1 = r,/(r1+ 1) (12) 
for brevity. 

At this stage we take note of the physical requirement that each and every 
e,, v 2 2, shall be a continuous function of the spatial co-ordinate z. In  other 
words, whilst we admit the possibility that p ,  p, u and T, may change discon- 
tinuously with 2, we require that e, shall never do so. 

38 Fluid Mech. 21 
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With this information, it is clear that the right-hand side of equation (1 1) is 
a continuous function of x; whence it follows that 

(u - P l f  )2 

must be a continuous function of x. 
Clearly the latter condition is satisfied if ~ ( x )  is everywhere continuous, but 

we observe that it is possible for u to jump from a value u, > p1 f to' a value 

(13) 
ub < plf, provided that 

Equation (13) can be recognized as a jump solution of equations (1)-(3) with 
Ze, fixed across the jump. Consequently it represents a Rankine-Hugoniot dis- 
continuity in a frozen flow (the internal modes do not change their energy content 
on crossing the front), and so the transition can only take place from u, down to 
Ub as x increases in the flow direction. The expansion discontinuity, across which 
u jumps from t6b up to ua is forbidden by the Second Law of Thermodynamics. 

Clearly the speed ,ul f, which is characteristic of the particular upstream 
(x = -00) conditions, is an important quantity. Noting from equations (1) and 

ua- Plf = Plf - ub* 

( 2 )  that f = U+PIPU, 

we observe that the conditions u $ plf are equivalent to 

,a2 z YlPlP = 4. (15) 

af is the frozen speed of sound, so that when u is equal to ,ulf the local frozen 
Mach number, ulaf, is equal to unity. 

Although we have shown that a frozen shock (as we may call the discontinuity 
described by equation (13)) is a possibility, we have yet to decide under what 
circumstances it is likely to appear, if at all. One criterion must be the value of 
u, in the equilibrium free stream, for, if u, < pf (and hence u, < afm), it is clear 
that no initial frozen shock can occur. Such waxes will be called fully dispersed. 

When u, > p J  we can show that the frozen shock must occur at the head of 
all compression waves, for the following reasons. First of all we must write down 
the relaxation equations which describe how the internal energy modes are 
excited. We shall assume that 

de, r,u - = e,(Tl)-e,  = he, 
ax 

for all v. r, is the relevant relaxation time, a positive quantity, although not 
necessarily constant, and e,(Tl) is the value of the internal energy e, when the 
mode is in complete equilibrium with the active states at the local translational 
temperature Tl. (The difference Ae, is defined in equation (16) for later con- 
venience.) We note that, if two relaxation times, rv and r,,+l for example, are 
equal everywhere, the two relaxation equations can be added and the total 
energy e, + e,+l considered as the energy of a single mode. 

Now equation (8) shows that 
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When u, > p1 f there will be a region near to u, for which the condition u > plf 
is also satisfied and, since y1 > 1, it follows that u > 4f will necessarily be true in 
that region. From equation (17) it  is clear that dTl/du < 0 under these circum- 
stances. 

Equation (11) shows that 

(18) 

whence dell z- > 0, u > p,f. d u  (19) 

I I I I t 
U 

4 f 
FIQ- 1. 

Condition (19) demands that at least one of the de,,/du shall be > 0,  and, without 
loss of generality, we shall assume that 

de2/du > 0.  (20) 

The equilibrium value of e2, namely e2(T1), is e monotonically increasing function 
of T,, so that if dTl/du < 0, de,(T,)/du c 0 too. With the proviso that the flow at 
x = - 00 is in equilibrium, so that 

e, = e,,(T,,) or Ae, = 0 at x = -03, 

we can now sketch the behaviour of e,(T,) and e2 in the vicinity of u, (see 
figure 1). Let us first suppose that u decreases with increasing 2 from its 
upstream value u, (i.e. duldx < 0). Then it is apparent from figure 1 that 
Ae2 > 0, and from equation (16) that &e2/dx > 0. Consequently 

in violation of the original assumption in equation (20). If duldx > 0, we find 
Ae2 < 0, de2/dx c 0 and de,/du < 0 once again. 

Thus a condition like equation (20) cannot be satisfied for any e,,, and con- 
sequently we cannot satisfy condition (19) for any duldx + 0. We infer that there 
can be no continuous variation of u ( x )  from the value u, > p1 f; whence the only 

38-2 
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accessible route from u, to any other value of u must be through the frozen 
shock, described (see equation (13)) by the relation 

%b( < P l f )  = ‘Plf - (21) 

Differentiating equation (1 1) with respect to x gives 

Y1+ 

In  particular, when u = Ub, 

and equation (16) shows that 

7 (24) 
- ev(Tlb) - e,(Tlco) (2Lb - ub ‘vb 

since e, still has its upstream equilibrium value. Equations (8) and (21) show that 

Consequently all de,/dx > 0 a t  u = ub and, from (23), du/dx is always negative at 
u = Ub. We infer that u(x) must subsequently either decrease monotonically to 
its final equilibrium value or at least pass through a local minimum value if the 
variations of u(x)  are not to be monotonic. This latter question will be discussed 
shortly. Waves for which u, > pJ will be called partly dispersed. 

Having established the initial behaviour of u ( x )  for u, > p J ,  we turn now to 
it consideration of the initial behaviour for the case u, < p1f .  If we rewrite 
equation (16) in the form 

a solution for he, can be written down as follows: 

b is an arbitrarily chosen constant value of x, whilst A,  is clearly the value of Ae, 
when z = b. In  the present case (u, < pl f ) ,  we choose b = - co, whence A,  = 0 
since the flow is in equilibrium at x = -a. Since we can write 

it is clear that the behaviour of Ae, is intimately associated with that of dTl/dy 
(de,(Tl)/dTl is essentially positive). 

We shall suppose that in addition to u, < p J ,  u, also satisfies the condition 
u, > 4f. (A steady compression wave can only exist if u, is greater than the 
free-stream equilibrium sound speed. The condition u if is interpreted in 
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equation (67) below, from which it is clear that u, > ifis essential.) From (8) we 
find that 

dT1 du 
ax ax 

R- = ( f -3u)- ,  

so that, if duldx 0, dTl/dx 2 0 under these circumstances. 
We can now ask whether u ( x )  can increase monotonically through the value 

pf in a continuous fashion. Any jump increase through this vdue is forbidden 
by the Second Law, as we have remarked previously. If it  is to do so, equation 
(22) makes it clear that Z(de,/dx) must be proportional to u-pl f  and conse- 
quently 

(. 2),,,, = 0. (30) 

But, if u ( x )  increases monotonically, we have just seen that Tl decreases mono- 
tonically. Hence dTJdy will be uniformly negative, and equations (28) and (27) 
show that all Ae, < 0. Consequently all de,/dx < 0, and condition (30) cannot 
possibly be satisfied. Hence u ( x )  does not increase monotonically through the 
value p1 f. 

It now follows that, if u ( x )  is to increase at all, it must pass through an initial 
maximum value ( < p1 f ). This is because in the overall region of compression the 
final velocity must be less than u,. If duldx is to be locally equal to zero, equa- 
tion (22) shows that 

Z,=O de, 
dx 

must be satisfied a t  the stationary point. But, by hypothesis, dTl/dx will be < 0 
from -a up to this point, so that all Ae, < 0 (from equation (27) with b = -a 
and A,  = 0). Thus all de,/dx < 0, and condition (31) cannot be satisfied. 

The inference is that u ( x )  can only decrease initially. It will either continue 
to do so, or pass first through a minimum value as we have previously found to 
be the case for u, > p1 f .  Waves for which u, < p1 f will be called fully dispersed. 

To summarize the results of this section: 
(i) If u, > pulf, u f i s t  decreases discontinuously through a frozen shock to a 

value u, < pf; from then on it either decreases monotonically to its final value 
or passes first through a local minimum. 

(ii) If u, < pf, u first decreases continuously and thence either monotonically 
to its final equilibrium value, or passes first through a local minimum. 

We would point out that these results have been deduced with a minimum of 
assumptions about the physical character of the relaxing internal energy modes. 
In  particular, both their specific heats and their relaxation times have been 
required only to be positive quantities and not necessarily constants. 

3. The monotonic character of u(x) 
The question that still remains open after the work of the previous section is 

whether or not the velocity profile has an initial minimum value. If we can prove 
that such a minimum is impossible it follows that u(x )  is a monotonically 
decreasing function under all circumstances. 
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In  attempting to settle this issue, some general observations are in order. 
Bearing in mind the fact that u < pfin the regions where u ( x )  is continuous, we 
note first from equations (22) that, when duldx is zero, 

Z - = O .  de, 
ax 

Next we observe from equation (29) that 

dT1 - = 0, 
dx 

when duldx = 0. Differentiating (29) with respect to x shows that 

Thus d2Tl d2u 
dx2 dx 

R -  = ( f - 2 ~ )  7, 

(33) 

(34) 

(35) 

when duldx = 0. 
pGf, separately. First let us 

examine the case urn < pf. With the assumption, made previously, that u, > if 
is essential for the appearance of a steady compression wave, let us assume that 
duldx = 0 occurs before u has decreased through the value if. Then, since 
duldx < 0 prior to the position at which the minimum is assumed to have 
occurred, equation (29) shows that dTJdx > 0 over the same range of values of x .  
Since we take (see equation (27) et seq.) 

Once again we shall consider the two cases, u, 

for the case u, < plf, it follows that each he, > 0; thus each de,/dx > 0, and 
condition (32) cannot be satisfied. The inference is that when urn < pf, u ( x )  can 
have no minimum in the range urn u 2 if. What happens if the wave is strong 
enough to make u fall below the value +f, we shall discuss shortly. 

Turning to the case u, > p l f ,  let us assume that u b  > +f. Equation (21) 
shows that this condition is equivalent to 

so that the wave is of restricted strength. If the assumed minimum of u(x)  is to  
occur before u reaches &f, we know that du/dx < 0 and dTl:/dx > 0 from Ub down 
to the assumed stationary value. It is convenient to locate u = u b  where x = 0, 
and the appropriate version of equation (27) is 

where = ev(T1b) - ep(T1w) > O.  (39) 

It follows from the assumptions made above that again he, > 0 for all Y, and that 
in consequence condition (32) cannot be satisfied. Once more the inference is 
that duldx = 0 cannot occur before u = 4f. 
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Indeed equations (36) and (38) make it clear that any particular Ae, cannot be 
zero or negative until dTl/dx changes sign and becomes negative. In  the case of 
a wave which is sufficiently strong to make u decrease through $f, a stationary 
value for u(x) is still possible. 

When u = if, (34) shows that 

so that Tl is necessarily a maximum at this location. Since dT,/dx and du/dx 
must otherwise be zero together, we remark that the first stationary value of Tl 
after the maximum at if must be a minimum, and equation (35) confirms that 
this coincides with the already established necessary minimum in u. 

Without having yet answered the question as to whether a minimum in u does 
or does not occur, we have now a t  least narrowed the field within which such a 
possibility remains. 

At this stage we sacrifice some of the generality of the foregoing analysis and 
make the following assumptions about the behaviour of the internal energy 
modes. First, we assume that the energy content of each mode can be specified 
by defining an internal-mode temperature T,, which differs in general from T,, 
and is only equal to it when equilibrium prevails. Then we assume that 

de, 
dT, 
- = C, = const. 

for all v, although each C, may be different. Since we deal onlywith communicable 

(42) 
energies it follows that 

e, = CUT,, e,(T,) = CUTl. 
Secondly, we assume that all the relaxation times 7, are constants. The energies 
of relaxing internal modes are most often non-linear functions of their tem- 
peratures T,. The linear relationships in equations (42) can be considered as 
reasonable approximations, applicable within the relatively small temperature 
ranges appropriate to comparatively weak shock waves. Similarly, one may 
take the relaxation times to be some suitable constant mean values throughout 
such waves. 

With these assumptions, we can now write equation (36) as 

dTl 
T1- T, = exp ( - Y/T,) dy,  (43) 

where (44) 

(45) 
dT, 

and (38) as T,-T, = I. dyexp(- ~ / 7 , ) d y + ~ ~ b - ~ ~ m .  

We note that Y in equation (44) is always positive or zero, the latter value 
occurring only when y = x. Thus the exponential in the integrands of (43) and 
(45) is always < 1. These two equations show that 
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where b = - 00 or 0 appropriately. Without loss of generality, let us assume that 

7, < Tv+, (v 2 2). (47) 

For x,  > x > b, where xm is the position at which the maximum in T, occurs, 
equation (46) shows that T, > T,+,, because dT,/dx =- 0 in this interval. In  addi- 
tion, we observe that and T,+, can only become equal once more (they are 
equal at x = b) after dT,/dx has become negative. The inference is that, if the T, 
are to exceed T, at all, then they will cross over the T,(x) curve in the order T, 
before T,+,, T,+, before T,+2, etc., where the word ‘before’ implies ‘at a smaller 
value of x than’. When T, has crossed over T,, the value of dT,/dx will be negative, 
and these negative values of the internal-mode-temperature gradients will arise 
in strict order of increasing values of r,,. 

To return to the general case for a moment, we differentiate (22) with respect 
to x,  giving 

(48) 

where we have used equation (16 )  to eliminate dev/dx from (22). Now T,, is, in 
general, a function of p and T, and hence is a function of zc. It follows that 
d(l /ur , ) /dx is proportional to du/dx.  When duldx = 0, equation (48) therefore 
gives 

We readily infer that, if the local minimum value of u is to occur, we should 

(50)  

expect to find 
x-- > 0 

1 de, 
7” ax 

at the point in question. It should be emphasized that condition (50) is com- 
pletely general and in no way depends on the constancy or otherwise of C,, and T,,. 

Returning to the specific case for which C, and rV are constant, we can rewrite 
the necessary conditions (32) and (50) for the appearance of a minimum in zc as 
follows : dT, c dT, 

ax 7, ax xc,- = 0;  x-”- > 0. 

We take a simple case first; assume that only T2 has crossed T,, so that we have 

3 < 0; 9 > 0, (v 2 3); r2 < rv (v 3 3). ax ax 

Eliminating dT,/dx from the second of equations (51) with the aid of the first we 
find that we should have 

Clearly conditions (52) and (53) are incompatible, and no minimum in u(x) is 
possible in these circumstances. To prove that a minimum is impossible in all 
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circumstances when Cv and r,, are constant, we can proceed as follows. From the 
inequalities (47) we can write 

(54) 

where 6,  > 0, m 2 n 2 3. Then equation (53) which is generally valid, can be 
written in the form 

rF1 = 7c1+e3 = r i 1 + E 3 + e 4  = ... = r i 1 + e 3 +  ...+ em, 

m 

w=3 ax q=3 v=q 

We now assume that 

and rewrite (55 )  as 
5 m d T , m  dT, 

q=3 v=q ax q=$+1 v = q  
c eq z cw-+ c €q cw-& < 0. 

But the first of equations (51) shows that 

and putting this result into the first term of (57), we require to find 

(55)  

(57) 

In  the first term of equation (58) we have 2 < v < 9- 1, so that from (56) all the 
relevant dT,/dx are < 0, and in the second term of (58) $+ 1 Q v Q m, so that 
all the relevant dT,/dx are > 0. Since eq and Cv are essentially positive, condi- 
tion (58) cannot ever be satisfied for any value of $7. 

We deduce that when Cv and rw are constants u(x) must be a monotonically 
decreasing function from its initial to its final value, whatever the value of u,. 

It is worth noting that even though u(x) is a monotonically decreasing function 
in this case (so that p and p will increase monotonically) the translational and 
internal mode temperatures may have local maxima. The maximum in TI must 
occur where u = *f, whilst maxima in T, will arise only when they cross the Tl(x) 
curve and hence occur after u has decreased through if. When Cv and rw are 
constants, we could now make qualitative sketches of the behaviour of all the 
relevant variables in the shock region. Rather than do this we shall in Q 4 give 
the results of some numerical calculations for the special case of two relaxing 
modes. 

Whilst the case of constant C,, and rv has now been satisfactorily resolved, we 
have not yet cleared up the more general (and indeed strictly more practical) case 
for which these quantities vary with p and Tl. In  the simple case of one relaxing 
mode, it is clear that conditions (32) and (50) are generally incompatible, and the 
velocity profile can only be of monotonic-decreasing form. With more than one 
mode, difficulty arises because of the necessity to discuss a strictly local set of 
conditions (namely conditions (32) and (50)) which nevertheless depend upon the 
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whole previous history of the flow, and in particular on the complete behaviour of 
C,, and r,, up to the point in question. Taking as an example the case of two modes, 
conditions (32) and (50) show that we must find 

\ 

B = ~2~3cPl2 (4PJ- -u) / IUl ,  

f(r3fCpi + + T ~ ( ~ p i  +c3)> 

- 2u{73(cp1 +(%-aR) +r2(cpl +c3- !&}, 
D z Cpe f - u(Cpe - 4R) - RH/w, 

at the minimum in ~ ( x ) .  Taking de3/dx > 0, for example, this means that we 
must find r3 < r, locally. Since de,/dx < 0, this implies that the mode with the 
longest relaxation time at the point in question must have previously overshot its 
equilibrium state whilst the other mode (with energy e3)  remains below its local 
equilibrium state despite having, locally, the shortest relaxation time. With 
constant relaxation times we have just proved that these conditions cannot hold, 
but, if the rv and C,, vary, there does not seem to be any reason why they should 
not arise. We can find no specific proof that they do not, and although we may 
venture to suggest that the situation is unlikely, it  is quite conceivable that it 
may arise for certain variations of C, and r,,. Whether the necessary variations 
of these quantities can arise in any real gas is another question which we must, 
for the present, leave open. It would appear that each case must be dealt with 
on its own individual merits. 

(62) ’ 

4. Numerical solutions for two relaxing modes 

become 
With the assumptions of constant C, and rv, the relaxation equations (16) 

1 - q  (v = 2331, (59) 
dT, r , , ~  - = T 
ax 

and equation (22) can be rewritten in the form 

Eliminating T,, T3 and Tl between these equations and (8) we find the following 
equation satisfied by u alone : 
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where ye is the (constant) ratio of the equilibrium specific heats, we can rewrite 
the function D in the form 

The gas flow at x = -a (where u = u,) and at x = +a (where u = us) is in 
equilibrium, and all gradients of u are zero at these points. Thus D is zero when 
x = & co, and it follows that the two roots, u, and us, of the quadratic expression 
in brackets in equation (63) are related as follows: 

2Ye 
Ye+' 

u,+us = -f, 

Ye+' 
u,us = 2- Y + f .  

Since we can write, from (3),  etc., 

H = c,,T,, + guk = 'ye RT,, + suk = A + Buk, 
Ye- 1 Ye- 1 

where m is either co or s and a, is the equilibrium speed of sound, equation (65) 
shows that 2 

u,us = - (a,", - 4) + 4, 
Ye+l 

or 

With u, us it  follows that u, 2 a,, and us < a,. The conditions u < 3 f, which 
have occurred quite frequently above, can be re-interpreted, using equation 
(14) as 

a, is the isothermal (or Newtonian) sound speed, and clearly a, < a, < af since 
1 < ye < yl. Because u must decrease monotonically between u, and us, it  
follows that u will pass through -i$f whenever us < if. From equation (64) this 

u2 $ p/p = a:. (67) 

will occur whenever 

The condition u, >, a,, can be re-interpreted as 

Ye 
Ye+l 

uwa-f, 

and, since ye  > 1,  we have a range of u, given by 

within which the wave is not strong enough to cause u to 'go isothermally sub- 
sonic ' (i.e. pass through 4j). When u, < p1 f ,  the wave has a continuous variation 
of u (in other words it is fully dispersed), and we may inquire whether u, = ,ul f 
lies within the range (70). Clearly p,f is greater than yJ / (ye+ 1 )  because y1 > ye, 
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so we need to know whether p l f  is less than (37,- 1) f/2(ye+ 1). This condition 

Ye > ( ~ Y I +  l ) l ( ~ l +  3). (71) 
only occurs if 

If we write cpe = c,, + -5; c,, = c,, + €7 (72) 

so that E is the additional specific heat contributed by the relaxing internal 
modes, we can re-interpret condition (71) as 

E < W p l t - c v , ) ,  (73) 
and there is a maximum energy content for the internal modes below which 
u does not become isothermally subsonic in a fully dispersed wave, and therefore 
no maximum in Tl can occur in such a wave. 

When urn > p l f ,  the wave starts with a frozen shock, reducing u to the value 
ub (given in (21)) discontinuously. In  the present case u then decreases mono- 
tonically to us. The previous paragraph has shown that u8 may be greater than $ f, 
even when urn > pl f ,  provided that ye has the appropriate value, but we should 
also inquire whether ub exceeds 4f. From equation (21) this will occur provided 
that 

If u, should exceed this value ub, and hence necessarily u,, will be below if, and 
it follows that both du/dx and dT,/dx will be everywhere negative. Such shocks 
are comparatively strong. For weaker shocks, with urn in the range given by 

Tl(x) will have a local maximum and although (dT,/dx) at u = ub is necessarily 
positive in this upstream velocity range, it is possible that T,, may be either 
greater or less than Tw These possibilities occur according as to whether 

respectively. We note that 

because 1 < ye < y,, so that both cases Tlb 2 Tb will always occur in the velocity 
range (75). 

We must now set out to find numerical solutions for u from equation (61). 
Once U ( X )  is known T,(x) can be found from (S), and T, and T3 from (59); p and p 
will follow from (1) and (2). The constant f provides a natural and suitable 
velocity characterizing any particular situation, and accordingly we define the 
following dimensionless variables : 

21 = u/f; y = x/r3f; A = 7,/r3. (78) 

From equation (61) we find that 
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The result for D follows from the fact that we can write D (see (63)) in the form 

yeye+ 1 (u-urn) (u-us) D = - C  ~ 9 

pe  2Ye U 

t = dv/dy, 

since u, and us are the roots of the quadratic term in brackets in (63). 
Defining 

so that 
d2v dt dt - = - = - t ,  
dy2 dy dv 

equation (79) shows that 
at Bt2+ Ct + D 
dv A t  

- - - -  

This first-order equation has singular points at 

t = 0 ,  v=v,; t = 0 ,  v = v s ;  (84) 

which clearly represent the respective upstream and downstream equilibrium 
states. Writing t = l / z  shows that the equation has additional singular points at 
v = pl (where A = 0) and t = f 03. However, we know that the only continuous 
solutions for u, and hence for v, arise when v < p,, so that we need not concern 
ourselves with these two points. When v, < p,, we need to compute the integral 
curve which connects the two points (84), whilst when v, > ,ul we only require 
to compute that portion of the integral curve which connects the point v,, tb with 
the point v,, 0. Equation (21) shows that 

v b  = 2pU,-v,, (85)  

whilst (23) and (24), etc., enable us to evaluate tb. 
The point v,, 0 is a saddle point and v,, 0 is a degenerate node through which 

the integral curves can pass along either one of two lines whose slopes are given by 

A, and c, are A and evaluated at v = us. It is possible, after some tedious 
algebra, to show that C8 > 0 for v, < p, (which is always true), and that the 
square-root quantity is always positive. Accordingly, the slopes dt/dv at v,, 0 
are both always real and negative. Which of these two integral curve slopes is the 
slope of the required solution curve is not of direct importance, since the 
numerical solution is always started from the saddle point v,, 0 when v, < ,ul 
and from vb, tb when v, > pl. The numerical procedures then always select the 
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correct curve. However, equation (86) provides a useful check on the numerical 
accuracy achieved, since it allows direct evaluation of the final slope for purposes 
of comparison. We remark too that it is possible to evaluate dtldv a t  v,, 0 and at 
vb, tb for the solution curves, so enabling the numerical work to proceed directly 
from initial to final phase-plane (or (t,v)-plane) points, without the need for 
iterative procedures. The advantages of computing over a finite range v, < v < v, 
(or vb) in the independent variable are obvious when compared wibh the infinite 
range of values of y necessary for direct (v,y)-plane computation. Once the 
solution curve in the phase plane is known v(y) is calculated at once by simple 
quadratures. 

The numerical integrations were performed on the Ferranti Pegasus Mk I1 
digital machine at the College of Aeronautics. Some examples of the results 
obtained are shown graphically in figures 2-6. The gas is a hypothetical one for 
which 

Each internal mode is therefore treated as if it  is classically excited with two 
degrees of freedom. It follows that 

C,, = iR, C,, = SR, C, = R = C,. (87) 

y1 = 7/5, ye = 11/9. (88) 

We note that 8, defined in (72), is equal to 2R in this case. Since Q(C,, + Cvl) is 
equal to 3R condition (73), and hence condition (71), is satisfied and no fully 
dispersed wave in our model gas can be strong enough to make u pass through if. 
Consequently the translational temperature must increase monotonically in our 
fully dispersed waves. 

It is convenient to  deal in terms of non-dimensional temperatures, defined as 
follows: 

Figures 2-6 are graphs of v vs. y and TL vs. y for various values of A, each figure 
being for a different shock strength. Shock strength is specified once v, is known, 
but it is more physically meaningful if quoted in terms of the upstream equi- 
librium Mach number Me,, where 

TL = RT,/f2 (12 = 1,2,3). (89) 

Mew = Uwlaew. 
Me, and vw are related as follows: 

Figure 2 shows profiles for a typical fully dispersed wave. The effect on the 
velocity profiles of increasing 7 2  for a fixed T~ (i.e. of increasing A)  is illustrated in 
figures 2 (a) and 2 (b)  : it  is interesting to note that very large differences in these 
two quantities are necessary before the velocity profile begins to change from 
a smooth monotonic shape. This can be seen in figure 2(b), where the effect of 
differing relaxation times shows up as a sharp change of slope around v = v: only 
when A is as large as 1000. vl is the downstream (dimensionless) value of the 
velocity for the given v,, calculated on the assumption that one mode is com- 
pletely frozen (in this case, mode 2). The effective ‘equilibrium 7’  is yi,  equal to 

v, * 
v, = -- I 2Y:, 

Yl.+1 

917 i n  this case, and 
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When h equals 1000, it is perhaps a reasonable approximation to consider the 
fully dispersed wave as consisting of two consecutive regions, the behaviour in 
each being dominated by the relaxation of a particular energy mode. This 
behaviour is not so apparent from the v(y)  curves when h equals 10 and 100 in 
figure 2 (b ) .  Some extra light is shed on this question by the temperature profiles 
drawn for h equal to 100 in figure 2 ( d ) .  From this it is apparent that quite 
significant changes have occurred in the ‘slow’ mode 2 before mode 3 can fairly 
be said to have come into equilibrium with the active states, although to be sure 
Ti  and TS never differ very greatly. 

Tim 0 2 4 6 8 10 12 14 

0.54 

0*53 0 200 400 600 800 1000 0 50 100 150 200 250 

Y Y 
( b )  (4 

FIGURE 2. Fully dispersed wave. M e ,  = 1.03; w m  = 0.5647, v, = 0.5363; y1 = 7/6, 
ye = 11/9. h = T ~ / T * .  ( b )  Velocity profiles for 
h = 10, 100, 1000. (c) Temperature profiles for h = 2. (d )  Temperature profiles for 
A = 100. 

(a) Velocity profiles for h = 1, 2, 10. 

Figure 3 illustrates the behaviour in a very weak partly dispersed wave, so 
weak in fact that us is still ‘isothermally supersonic’. Ti continues to increase 
monotonically after its sudden jump a t  y = 0, and in conformity with the deduc- 
tions made in 0 3, there are no overshoots of Ti or Tk (see figures 3 (c), 3 ( d ) ) .  
v: in figure 3 ( b )  is calculated from equation (92). 

Increasing the strength of the wave leads first to the condition for which a 
maximum in Ti occurs in the region of continuous variations, but for which 
Tib < Tis. The velocity profiles are similar to those in figures 3 (a)  and 3 ( b ) ,  with 
the discontinuity occupying rather more of the full wave amplitude. The tem- 
perature profiles, for h = 2 only, are exhibited in figure 4, which is drawn to 
a magnified vertical scale in order to dramatize the significant effects. The over- 
shoot of Tj, the ‘fast’ mode in this case, is clearly seen, but it should be noted 
that the amount by which Tj actually exceeds Ti is a small fraction of the total 
variations of temperature which are involved. 
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F ~ a m  3. Partly dispersed wave. M , ,  = 1-1;  vm = 0.5977, v, = 0.5023; y1 = 7/5, 
yo = 11/9. A = T * / T ~ .  (a)  Velocity profiles for h = 1, 2, 10. (b )  Velocity profiles for 
h = 10, 100, 1000. (c) Temperature profiles for h = 2. (d )  Temperature profiles for 
h = 10. 
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0.2484 - I 

1' Ti ,  = 0.23310 

Y 
FIGWE 4. Partly dispersedwave. M , ,  = 1.18; vm = 0.63, v, = 0.47; y1 = 7/5, ye = 11/9. 

Temperature profiles for h = 2,  h = 72/78. 
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FIGURE 5. Partly dispersed wave. M,,  = 1.23; v, = 0.65, v, = 0.45; y1 = 7/5,yd = 11/9. 
h = T&-~. (b )  Temperature profiles for h = 2. 
(c) Temperature profiles for h = 100. 

(a) Velocity profiles for A = 2, 10. 
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FIGURE 6. Partly dispersed wave. M e ,  = 1-57; V, = 0.75, V, = 0.35; y1 = 7/5, 
ye = 11/9. A = T ~ / T ~ .  (a)  Velocity profiles for h = 2. ( b )  Temperature profiles for h = 2. 
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A further increase in the wave strength leads next to the state in which 
dT;ldy equal to zero still occurs after the discontinuity, but this time with 
T$ > Tis. Apart from this latter difference, figure 5 (b )  is very similar to figure 4, 
both being for the case h equal to 2. However, when h equals 100 figure 5 ( c )  
shows that TL quickly reaches a condition in which it is for all practical purposes 
equal to Ti.  The numerical results do show that T3 exceeds Ti from about y = 3.5 
onwards, but this does not show up on the scale of the figure. The peak in the Ti 
curve occupies a very small region in the whole relaxation zone. Figure S(a) 
shows (on a magnified vertical scale, so that once again the whole wave amplitude 
is not exhibited) the variations of v for two values of A. vl is found from equation 
(92) (mode 2 assumed frozen), and the dotted line represents the results of a one- 
mode calculation for the relaxation of mode 2 only from this point on. It can be 
seen that the exact two-mode and approximate one-mode calculations quickly 
merge for the chosen value of A, namely 10. Whilst the one-mode approximation 
is undoubtedly good for v in this case, it is most important to note that since 
v: < + the whole of the peak in Ti and, of course, the overshoot in T3 would be 
lost from the related approximate temperature curves. 

Finally, figure 6 illustrates the behaviour of velocity and temperatures for 
a ' strong' wave, which has no maximum for Ti in the relaxation zone. Figure 6 ( b )  
indicates that Ti exceeds Ti for the particular value of h chosen, namely 2, 
although the extent of the overshoot is clearly not large compared with the 
overall variations involved. The picture will now remain substantially the same 
for all waves of greater strength. 

Although the results discussed above are for particular cases it is safe to draw 
some general conclusions from them. In particular, it is true that the velocity 
(and hence density and pressure) variations in the continuous regions of the 
waves do not respond significantly to the details of internal mode behaviour. 
Experimental investigations which set out to determine relaxation behaviour 
by measuring any of these quantities may therefore be expected to be somewhat 
insensitive. There seems to be a good case for pursuing the development of experi- 
mental techniques which could record directly those interesting variations in the 
temperatures which have been exemplified here. 

The authors would like to express their gratitude to Dr S. Kirkby for his expert 
assistance whilst carrying out the numerical solutions. 
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